FITZGERALD
 DENNIS
 DURCIKOVA

BUSINESS DATA COMMUNICATIONS \& NETWORKING

i様
 $12^{\text {TH }}$ EDITION

Business Data Communications and Networking
 Twelfth Edition

Jerry FitzGerald
Jerry FitzGerald \& Associates
Alan Dennis
Indiana University
Alexandra Durcikova
University of Oklahoma

To my beautiful wife Kelly

VICE PRESIDENT AND EXECUTIVE PUBLISHER Don Fowley
EXECUTIVE EDITOR Beth Lang Golub
EDITORIAL ASSISTANT Jayne Ziemba
SPONSORING EDITOR Mary O'Sullivan
PROJECT EDITOR Ellen Keohane
MARKETING MANAGER Margaret Barrett
MARKETING ASSISTANT Elisa Wong
SENIOR PRODUCT DESIGNER Lydia Cheng
ASSOCIATE EDITOR Christina Volpe
PHOTO EDITOR James Russiello
SENIOR DESIGNER Maureen Eide
ASSOCIATE PRODUCTION MANAGER Joyce Poh
SENIOR PRODUCTION EDITOR Yee Lyn Song
PRODUCTION SERVICES Sangeetha Parthasarathy/Laserwords
COVER DESIGNER Wendy Lai
COVER CREDIT © Rawpixel / iStockphoto

This book was set in Times Roman by Laserwords Private Limited, Chennai, India and printed and bound by Courier Kendallville. The cover was printed by Courier Kendallville.

This book is printed on acid-free paper. (0)
Founded in 1807, John Wiley \& Sons, Inc., has been a valued source of knowledge and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is built on a foundation of principles that include responsibility to the communities we serve and where we live and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental, social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon impact, paper specifications and procurement, ethical conduct within our business and among our vendors, and community and charitable support. For more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2015, 2012, 2009, 2007, John Wiley \& Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, phone (201) 748-6011, fax (201) 748-6008, website http://www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in their courses during the next academic year. These copies are licensed and may not be sold or transferred to a third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instructions and a free-of-charge return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to adopt this textbook for use in your course, please accept this book as your complimentary desk copy. Outside of the United States, please contact your local sales representative.

Library of Congress Cataloging-in-Publication Data

FitzGerald, Jerry, 1936-
Business data communications and networking / Jerry FitzGerald, Jerry FitzGerald \& Associates, Alan Dennis, Indiana University, Alexandra Durcikova, University of Arizona. - Twelfth edition. pages cm
Includes bibliographical references and index.
ISBN 978-1-118-89168-1 (paperback)

1. Data transmission systems. 2. Computer networks. 3. Office practice-Automation. I. Dennis, Alan.
II. Durcikova, Alexandra. III. Title.

TK5105.F577 2015
004.6-dc23

Printed in the United States of America
10987654321

ABOUT THE AUTHORS

Alan Dennis is professor of information systems in the Kelley School of Business at Indiana University and holds the John T. Chambers Chair in Internet Systems. The Chambers Chair was established to honor John Chambers, president and chief executive officer of Cisco Systems, the worldwide leader of networking technologies for the Internet.

Prior to joining Indiana University, Alan spent nine years as a professor at the University of Georgia, where he won the Richard B. Russell Award for Excellence in Undergraduate Teaching. He has a bachelor's degree in computer science from Acadia University in Nova Scotia, Canada, and an MBA from Queen's University in Ontario, Canada. His PhD in management of information systems is from the University of Arizona. Prior to entering the Arizona doctoral program, he spent three years on the faculty of the Queen's School of Business.

Alan has extensive experience in the development and application of groupware and Internet technologies and co-founded Courseload, an electronic textbook company whose goal is to improve learning and reduce the cost of textbooks. He has won many awards for theoretical and applied research and has published more than 150 business and research articles, including those in Management Science, MIS Quarterly, Information Systems Research, Academy of Management Journal, Organization Behavior and Human Decision Making, Journal of Applied Psychology, Communications of the ACM, and IEEE Transactions of Systems, Man, and Cybernetics. His first book was Getting Started with Microcomputers, published in 1986. Alan is also an author of two systems analysis and design books published by Wiley. He is the cochair of the Internet Technologies Track of the Hawaii International Conference on System Sciences. He has served as a consultant to BellSouth, Boeing, IBM, Hughes Missile Systems, the U.S. Department of Defense, and the Australian Army.

Alexandra Durcikova is an Assistant Professor at the Price College of Business, University of Oklahoma. Alexandra has a PhD in management information systems from the University of Pittsburgh. She has earned a MSc degree in solid state physics from Comenius University, Bratislava, worked as an experimental physics researcher in the area of superconductivity and as an instructor of executive MBA students prior to pursuing her PhD . Alexandra's research interests include knowledge management and knowledge management systems, the role of organizational climate in the use of knowledge management systems, knowledge management system characteristics, governance mechanisms in the use of knowledge management systems, and human compliance with security policy and characteristics of successful phishing attempts within the area of network security. Her research appears in Information Systems Research, Journal of Management Information Systems, Information Systems Journal, Journal of Organizational and End User Computing, International Journal of Human-Computer Studies, International Journal of Human-Computer Studies, and Communications of the ACM.

Alexandra has been teaching business data communications to both undergraduate and graduate students for several years. In addition, she has been teaching classes on information technology strategy and most recently won the Dean's Award for Undergraduate Teaching Excellence while teaching at the University of Arizona.

Dr. Jerry FitzGerald wrote the early editions of this book in the 1980s. At the time, he was the principal in Jerry FitzGerald \& Associates, a firm he started in 1977.

PREFACE

The field of data communications has grown faster and become more important than computer processing itself. Though they go hand in hand, the ability to communicate and connect with other computers and mobile devices is what makes or breaks a business today. There are three trends that support this notion. First, the wireless LAN and Bring-Your-Own-Device (BYOD) allow us to stay connected not only with the workplace but also with family and friends. Second, computers and networks are becoming an essential part of not only computers but also devices we use for other purpose, such as kitchen appliances. This web of things allows you to set the thermostat in your home from your mobile phone, can help you cook a dinner, or eventually can allow you to drive to work without ever touching the steering wheel. Lastly, we see that a lot of life is moving online. At first this started with games, but education, politics, and activism followed swiftly. Therefore, understanding how networks work; how they should be set up to support scalability, mobility, and security; and how to manage them is of utmost importance to any business. This need will call not only for engineers who deeply understand the technical aspects of networks but also for highly social individuals who embrace technology in creative ways to allow business to achieve a competitive edge through utilizing this technology. So the call is for you who are reading this book-you are at the right place at the right time!

PURPOSE OF THIS BOOK

Our goal is to combine the fundamental concepts of data communications and networking with practical applications. Although technologies and applications change rapidly, the fundamental concepts evolve much more slowly; they provide the foundation from which new technologies and applications can be understood, evaluated, and compared.

This book has two intended audiences. First and foremost, it is a university textbook. Each chapter introduces, describes, and then summarizes fundamental concepts and applications. Management Focus boxes highlight key issues and describe how networks are actually being used today. Technical Focus boxes highlight key technical issues and provide additional detail. Mini case studies at the end of each chapter provide the opportunity to apply these technical and management concepts. Hands-on exercises help to reinforce the concepts introduced in the chapter. Moreover, the text is accompanied by a detailed Instructor's Manual that provides additional background information, teaching tips, and sources of material for student exercises, assignments, and exams. Finally, our Web page contains supplements to our book.

Second, this book is intended for the professional who works in data communications and networking. The book has many detailed descriptions of the technical aspects of communications, along with illustrations where appropriate. Moreover, managerial, technical, and sales personnel can use this book to gain a better understanding of fundamental concepts and trade-offs not presented in technical books or product summaries.

WHAT'S NEW IN THIS EDITION

The twelfth edition maintains the three main themes of the eleventh edition, namely, (1) how networks work (Chapters 1-5); (2) network technologies (Chapters 6-10); and network security and management (Chapters 11 and 12). In the new edition, we removed older technologies and replaced them with new ones. Accordingly, new hands-on activities and questions have been added at the end of each chapter that guide students in understanding how to select technologies to build a network that would support an organization's business needs. In addition to this overarching change, the twelfth edition has five major changes from the eleventh edition:

First, we revised Chapter 1 to explain the three main themes of the book and to help students better understand why they should care about them.

The second major change is that this edition focuses on the design of networks. We introduce a comprehensive framework for network design in Chapter 6 that is supported by an ongoing case study at the ends of Chapters 6-10 that walks the students through network design step by step.

This modification leads to the third change: Chapters 6-12 are designed in a way that can be used for a "flipped classroom" style of teaching as well as the traditional lecture approach. Students are motivated to learn about LANs and WLANs (Chapter 7), BNs (Chapter 8), WANs (Chapter 9), and the Internet (Chapter 10) because they are designing a network for an organization.

Fourth, Chapter 5 has a detailed discussion with three new hands-on activities that describe subnetting for IPv4 and one activity that focuses on IPv6.

Finally, Chapter 11, which discusses network security, introduces a new framework for risk assessment that builds on currently accepted industry standards. It walks students through risk assessment in an easily comprehensible way.

LAB EXERCISES

www.wiley.com/college/fitzgerald
This edition includes an online lab manual with many hands-on exercises that can be used in a networking lab. These exercises include configuring servers and other additional practical topics.

ONLINE SUPPLEMENTS FOR INSTRUCTORS www.wiley.com/college/fitzgerald

Instructor's supplements comprise an Instructor's Manual that includes teaching tips, war stories and answers to end-of-chapter questions, a Test Bank that includes true-false, multiple choice, short answer, and essay test questions for each chapter, and Lecture Slides in PowerPoint for classroom presentations. All are available on the instructor's book companion site.

E-BOOK

Wiley E-Text: Powered by VitalSource offers students continuing access to materials for their course. Your students can access content on a mobile device, online from any Internet-connected computer, or by a computer via download. With dynamic features built into this e-text, students can search across content, highlight, and take notes that they can share with teachers and classmates. Readers will also have access to interactive images and embedded podcasts. Visit www.wiley.com/college/fitzgerald for more information.

ACKNOWLEDGMENTS

Our thanks to the many people who helped in preparing this edition. Specifically, we want to thank the staff at John Wiley \& Sons for their support, including Ellen Keohane, Mary O'Sullivan, Elizabeth Pearson, and Yee Lyn Song.
We also want to thank the reviewers whose comments helped us improve this book:
Hans-Joachim Adler, University of Texas at Dallas
Zenaida Bodwin, Northern Virginia Community College
Thomas Case, Georgia Southern University Jimmie Cauley II, University of Houston Rangadhar Dash, University of Texas at Arlington Bob Gehling, Auburn University, Montgomery Joseph Hasley, Metropolitan State University of Denver William G. Heninger, Brigham Young University Robert Hogan, University of Alabama Margaret Leary, Northern Virginia Community College Eleanor T. Loiacono, Worcester Polytechnic Institute Mohamed Mahgoub, New Jersey Institute of Technology Brad Mattocks, California Lutheran University Carlos Oliveira, University of California Irvine Don Riley, University of Maryland Joseph H. Schuessler, Tarleton State University Myron Sheu, California State University, Dominguez Hills Jean G. Smith, Technical College of the Lowcountry James Stephenson, Western International University Manjit Taneja, Northern Virginia Community College Mehmet Ulema, Manhattan College Jingguo Wang, University of Texas, Arlington Cartmell Warrington, SUNY Orange Qing Yan, Grantham University Shahid Zaheer, Fairleigh Dickinson University

Alan Dennis
Bloomington, Indiana www.kelley.indiana.edu/ardennis Alexandra Durcikova
Norman, Oklahoma

CONTENTS

About the Authors iii
Preface v
PART ONE
INTRODUCTION 1
Chapter 1
Introduction to Data Communications 1
1.1 Introduction 1
1.2 Data Communications Networks 4
1.2.1 Components of a Network 4
1.2.2 Types of Networks 6
1.3 Network Models 7
1.3.1 Open Systems Interconnection Reference Model 8
1.3.2 Internet Model 9
1.3.3 Message Transmission Using Layers 10
1.4 Network Standards 13
1.4.1 The Importance of Standards 13
1.4.2 The Standards-Making Process 13
1.4.3 Common Standards 16
1.5 Future Trends 16
1.5.1 Wireless LAN and BYOD 16
1.5.2 The Web of Things 17
1.5.3 Massively Online 17
1.6 Implications for Management 18
PART TWO
FUNDAMENTAL CONCEPTS 26
Chapter 2 Application Layer 26
2.1 Introduction 26
2.2 Application Architectures 27
2.2.1 Host-Based Architectures 28
2.2.2 Client-Based Architectures 28
2.2.3 Client-Server Architectures 29
2.2.4 Cloud Computing Architectures 32
2.2.5 Peer-to-Peer Architectures 34
2.2.6 Choosing Architectures 35
2.3 World Wide Web 36
2.3.1 How the Web Works 36
2.3.2 Inside an HTTP Request 37
2.3.3 Inside an HTTP Response 38
2.4 Electronic Mail 39
2.4.1 How Email Works 40
2.4.2 Inside an SMTP Packet 43
2.4.3 Attachments in Multipurpose Internet Mail Extension 43
2.5 Other Applications 44
2.5.1 Telnet 44
2.5.2 Instant Messaging 45
2.5.3 Videoconferencing 46
2.6 Implications for Management 48
Chapter 3
Physical Layer 60
3.1 Introduction 60
3.2 Circuits 62
3.2.1 Circuit Configuration 62
3.2.2 Data Flow 63
3.2.3 Multiplexing 64
3.3 Communication Media 66
3.3.1 Twisted Pair Cable 66
3.3.2 Coaxial Cable 67
3.3.3 Fiber-Optic Cable 67
3.3.4 Radio 69
3.3.5 Microwave 69
3.3.6 Satellite 70
3.3.7 Media Selection 71
3.4 Digital Transmission of Digital Data 72
3.4.1 Coding 72
3.4.2 Transmission Modes 73
3.4.3 Digital Transmission 74
3.4.4 How Ethernet Transmits Data 75
3.5 Analog Transmission of Digital Data 76
3.5.1 Modulation 77
3.5.2 Capacity of a Circuit 79
3.5.3 How Modems Transmit Data 80
3.6 Digital Transmission of Analog Data 80
3.6.1 Translating from Analog to Digital 80
3.6.2 How Telephones Transmit Voice Data 81
3.6.3 How Instant Messenger Transmits Voice Data 83
3.6.4 Voice over Internet Protocol (VoIP) 83
3.7 Implications for Management 84
Chapter 4
Data Link Layer 92
4.1 Introduction 92
4.2 Media Access Control 93
4.2.1 Contention 93
4.2.2 Controlled Access 93
4.2.3 Relative Performance 94
4.3 Error Control 95
4.3.1 Sources of Errors 96
4.3.2 Error Prevention 97
4.3.3 Error Detection 98
4.3.4 Error Correction via Retransmission 99
4.3.5 Forward Error Correction 102
4.3.6 Error Control in Practice 102
4.4 Data Link Protocols 103
4.4.1 Asynchronous Transmission 103
4.4.2 Synchronous Transmission 104
4.5 Transmission Efficiency 107
4.6 Implications for Management 109
Chapter 5
Network and Transport Layers116
5.1 Introduction 116
5.2 Transport and Network Layer Protocols 118
5.2.1 Transmission Control Protocol (ТСР) 118
5.2.2 Internet Protocol (IP) 119
5.3 Transport Layer Functions 120
5.3.1 Linking to the Application Layer 120
5.3.2 Segmenting 121
5.3.3 Session Management 122
5.4 Addressing 124
5.4.1 Assigning Addresses 124
5.4.2 Address Resolution 130
5.5 Routing 132
5.5.1 Types of Routing 134
5.5.2 Routing Protocols 135
5.5.3 Multicasting 137
5.5.4 The Anatomy of a Router 138
5.6 TCP/IP Example 140
5.6.1 Known Addresses, Same Subnet 140
5.6.2 Known Addresses, Different Subnet 143
5.6.3 Unknown Addresses 144
5.6.4 TCP Connections 144
5.6.5 TCP/IP and Network Layers 145
5.7 Implications for Management 147
PART THREE
NETWORK TECHNOLOGIES166
Chapter 6
Network Design 166
6.1 Introduction 166
6.1.1 Network Architecture Components 166
6.1.2 The Traditional Network Design Process 168
6.1.3 The Building-Block Network Design Process 169
6.2 Needs Analysis 171
6.2.1 Network Architecture Component 172
6.2.2 Application Systems 173
6.2.3 Network Users 173
6.2.4 Categorizing Network Needs 173
6.2.5 Deliverables 174
6.3 Technology Design 175
6.3.1 Designing Clients and Servers 175
6.3.2 Designing Circuits 175
6.3.3 Network Design Tools 177
6.3.4 Deliverables 178
6.4 Cost Assessment 178
6.4.1 Request for Proposal 178
6.4.2 Selling the Proposal to Management 179
6.4.3 Deliverables 180
6.5 Implications for Management 180
Chapter 7
Wired and Wireless Local Area Networks 184
7.1 Introduction 184
7.2 LAN Components 185
7.2.1 Network Interface Cards 186
7.2.2 Network Circuits 186
7.2.3 Network Hubs, Switches, and Access Points 187
7.2.4 Network Operating Systems 190
7.3 Wired Ethernet 191
7.3.1 Topology 191
7.3.2 Media Access Control 194
7.3.3 Types of Ethernet 195
7.4 Wireless Ethernet 196
7.4.1 Topology 196
7.4.2 Media Access Control 196
7.4.3 Wireless Ethernet Frame Layout 197
7.4.4 Types of Wireless Ethernet 198
7.4.5 Security 199
7.5 The Best Practice LAN Design 201
7.5.1 Designing User Access with Wired Ethernet 202
7.5.2 Designing User Access with Wireless Ethernet 202
7.5.3 Designing the Data Center 204
7.5.4 Designing the e-Commerce Edge 206
7.5.5 Designing the SOHO Environment 207
7.6 Improving LAN Performance 208
7.6.1 Improving Server Performance 209
7.6.2 Improving Circuit Capacity 210
7.6.3 Reducing Network Demand 211
7.7 Implications for Management 211
Chapter 8 Backbone Networks 222
8.1 Introduction 222
8.2 Switched Backbones 223
8.3 Routed Backbones 226
8.4 Virtual LANs 229
8.5 The Best Practice Backbone Design 234
8.6 Improving Backbone Performance 236
8.6.1 Improving Device Performance 236
8.6.2 Improving Circuit Capacity 236
8.6.3 Reducing Network Demand 236
8.7 Implications for Management 237
Chapter 9
Wide Area Networks 245
9.1 Introduction 245
9.2 Dedicated-Circuit Networks 246
9.2.1 Basic Architecture 246
9.2.2 T Carrier Services 249
9.2.3 SONET Services 251
9.3 Packet-Switched Networks 251
9.3.1 Basic Architecture 252
9.3.2 Frame Relay Services 253
9.3.3 Ethernet Services 254
9.3.4 MPLS Services 255
9.3.5 IP Services 256
9.4 Virtual Private Networks 257
9.4.1 Basic Architecture 257
9.4.2 VPN Types 258
9.4.3 How VPNs Work 258
9.5 The Best Practice WAN Design 261
9.6 Improving WAN Performance 262
9.6.1 Improving Device Performance 262
9.6.2 Improving Circuit Capacity 263
9.6.3 Reducing Network Demand 263
9.7 Implications for Management 264
Chapter 10276
10.1 Introduction 276
10.2 How the Internet Works 277
10.2.1 Basic Architecture 277
10.2.2 Connecting to an ISP 279
10.2.3 The Internet Today 280
10.3 Internet Access Technologies 281
10.3.1 Digital Subscriber Line (DSL) 281
10.3.2 Cable Modem 283
10.3.3 Fiber to the Home 285
10.3.4 WiMax 285
10.4 The Future of the Internet 286
10.4.1 Internet Governance 286
10.4.2 Building the Future 287
10.5 Implications for Management 289
PART FOUR NETWORK MANAGEMENT 296
Chapter 11 Network Security 296
11.1 Introduction 296
11.1.1 Why Networks Need Security 298
11.1.2 Types of Security Threats 298
11.1.3 Network Controls 300
11.2 Risk Assessment 301
11.2.1 Develop risk measurement criteria 301
11.2.2 Inventory IT assets 302
11.2.3 Identify Threats 304
11.2.4 Document Existing Controls 307
11.2.5 Identify Improvements 308
11.3 Ensuring Business Continuity 308
11.3.1 Virus Protection 309
11.3.2 Denial of Service Protection 310
11.3.3 Theft Protection 313
11.3.4 Device Failure Protection 313
11.3.5 Disaster Protection 314
11.4 Intrusion Prevention 318
11.4.1 Security Policy 319
11.4.2 Perimeter Security and Firewalls 319
11.4.3 Server and Client Protection 325
11.4.4 Encryption 329
11.4.5 User Authentication 335
11.4.6 Preventing Social Engineering 338
11.4.7 Intrusion Prevention Systems 339
11.4.8 Intrusion Recovery 341
11.5 Best Practice Recommendations 342
11.6 Implications for Management 344
Chapter 12 Network Management 353
12.1 Introduction 353
12.2 Designing for Network Performance 355
12.2.1 Managed Networks 355
12.2.2 Managing Network Traffic 359
12.2.3 Reducing Network Traffic 360
12.3 Configuration Management 363
12.3.1 Configuring the Network and Client Computers 363
12.3.2 Documenting the Configuration 364
12.4 Performance and Fault Management 366
12.4.1 Network Monitoring 366
12.4.2 Failure Control Function 368
12.4.3 Performance and Failure Statistics 370
12.4.4 Improving Performance 373
12.5 End User Support 373
12.5.1 Resolving Problems 373
12.5.2 Providing End User Training 375
12.6 Cost Management 375
12.6.1 Sources of Costs 375
12.6.2 Reducing Costs 378
12.7 Implications for Management 380
Appendices (Online)
Glossary (Online) Index 389

PART ONE INTRODUCTION

CHAPTER 1

INTRODUCTION TO DATA COMMUNICATIONS

This chapter introduces the basic concepts of data communications. It describes why it is important to study data communications and introduces you to the three fundamental questions that this book answers. Next, it discusses the basic types and components of a data communications network. Also, it examines the importance of a network model based on layers. Finally, it describes the three key trends in the future of networking.

OBJECTIVES

- Be aware of the three fundamental questions this book answers
- Be aware of the applications of data communications networks
- Be familiar with the major components of and types of networks
- Understand the role of network layers

■ Be familiar with the role of network standards

- Be aware of three key trends in communications and networking

OUTLINE

1.1 Introduction

1.2 Data Communications Networks
1.2.1 Components of a Network
1.2.2 Types of Networks
1.3 Network Models
1.3.1 Open Systems Interconnection Reference Model
1.3.2 Internet Model
1.3.3 Message Transmission Using Layers
1.4 Network Standards
1.4.1 The Importance of Standards
1.4.2 The Standards-Making Process
1.4.3 Common Standards 1.5 Future Trends
1.5.1 Wireless LAN and BYOD
1.5.2 The Web of Things
1.5.3 Massively Online
1.6 Implications for Management

Summary

1.1 INTRODUCTION

What Internet connection should you use? Cable modem or DSL (formally called Digital Subscriber Line)? Cable modems are supposedly faster than DSL, providing data speeds of 50 Mbps to DSL's $1.5-25 \mathrm{Mbps}$ (million bits per second). One cable company used a tortoise to represent DSL in advertisements. So which is faster? We'll give you a hint. Which won the race in the fable, the tortoise or the hare? By the time you finish this book, you'll understand which is faster and why, as well as why choosing the right company as your Internet service provider (ISP) is probably more important than choosing the right technology.

Over the past decade or so, it has become clear that the world has changed forever. We continue to forge our way through the Information Age-the second Industrial Revolution, according to John Chambers, CEO (chief executive officer) of Cisco Systems, Inc., one
of the world's leading networking technology companies. The first Industrial Revolution revolutionized the way people worked by introducing machines and new organizational forms. New companies and industries emerged, and old ones died off.

The second Industrial Revolution is revolutionizing the way people work through networking and data communications. The value of a high-speed data communications network is that it brings people together in a way never before possible. In the 1800s, it took several weeks for a message to reach North America by ship from England. By the 1900s, it could be transmitted within the hour. Today, it can be transmitted in seconds. Collapsing the information lag to Internet speeds means that people can communicate and access information anywhere in the world regardless of their physical location. In fact, today's problem is that we cannot handle the quantities of information we receive.

Data communications and networking is a truly global area of study, both because the technology enables global communication and because new technologies and applications often emerge from a variety of countries and spread rapidly around the world. The World Wide Web, for example, was born in a Swiss research lab, was nurtured through its first years primarily by European universities, and exploded into mainstream popular culture because of a development at an American research lab.

One of the problems in studying a global phenomenon lies in explaining the different political and regulatory issues that have evolved and currently exist in different parts of the world. Rather than attempt to explain the different paths taken by different countries, we have chosen simplicity instead. Historically, the majority of readers of previous editions of this book have come from North America. Therefore, although we retain a global focus on technology and its business implications, we focus mostly on North America.

This book answers three fundamental questions.
First, how does the Internet work? When you access a Web site using your computer, laptop, iPad, or smart phone, what happens so that the page opens in your Web browser? This is the focus in Chapters 1-5. The short answer is that the software on your computer (or any device) creates a message composed in different software languages (HTTP, TCP/IP, and Ethernet are common) that requests the page you clicked. This message is then broken up into a series of smaller parts that we call packets. Each packet is transmitted to the nearest router, which is a special-purpose computer whose primary job is to find the best route for these packets to their final destination. The packets move from router to router over the Internet until they reach the Web server, which puts the packets back together into the same message that your computer created. The Web server reads your request and then sends the page back to you in the same way-by composing a message using HTTP, TCP/IP, and Ethernet and then sending it as a series of smaller packets back through the Internet that the software on your computer puts together into the page you requested. You might have heard a news story that the U.S. or Chinese government can read your email or see what Web sites you're visiting. A more shocking truth is that the person sitting next you at a coffee shop might be doing exactly the same thing-reading all the packets that come from or go to your laptop. How is this possible, you ask? After finishing Chapter 5, you will know exactly how this is possible.

Second, how do I design a network? This is the focus of Chapters 6-10. We often think about networks in four layers. The first layer is the Local Area Network, or the LAN (either wired or wireless), which enables users like you and me to access the network. The second is the backbone network that connects the different LANs within a building. The third is the core network that connects different buildings on a company's campus. The final layer is connections we have to the other campuses within the organization and to the Internet. Each of these layers has slightly different concerns, so the way we design networks for them and the technologies we use are slightly different. Although this describes the standard for building
corporate networks, you will have a much better understanding of how your wireless router at home works. Perhaps more importantly, you'll learn why buying the newest and fastest wireless router for your house or apartment is probably not a good way to spend your money.

Finally, how do I manage my network to make sure it is secure, provides good performance, and doesn't cost too much? This is the focus of Chapters 11 and 12 . Would it surprise you to learn that most companies spend between $\$ 1,500$ and $\$ 3,500$ per computer per year on network management and security? Yup, we spend way more on network management and security each year than we spend to buy the computer in the first place. And that's for well-run networks; poorly run networks cost a lot more. Many people think network security is a technical problem, and to some extent, it is. However, the things people do and don't do cause more security risks than not having the latest technology. According to Symantec, one of the leading companies that sells antivirus software, about half of all security threats are not prevented by their software. These threats are called targeted attacks, such as phishing attacks (which are emails that look real but instead take you to fake Web sites) or ransomware (software apps that appear to be useful but actually lock your computer and demand a payment to unlock it). Therefore, network management is as much a people management issue as it is a technology management issue.

By the time you finish this book, you'll understand how networks work, how to design networks, and how to manage networks. You won't be an expert, but you'll be ready to enter an organization or move on to more advanced courses.

MANAGEMENT 1-1 Career Opportunities

FOCUS

It's a great time to be in information technology (IT)! The technology-fueled new economy has dramatically increased the demand for skilled IT professions. According to the U.S. Bureau of Labor Statistics, the second fastest growing occupation is data communications and networking analyst, which is expected to grow by 53% by 2018 and create 150,000 new jobs with an annual median salary of $\$ 71,100-$ not counting bonuses. There are two reasons for this growth. First, companies have to continuously upgrade their networks and thus need skilled employees to support their expanding IT infrastructure. Second, people are spending more time on their mobile devices, and because employers are allowing them to use these personal devices at work (i.e., BYOD, or bring your own device), the network infrastructure has to support the data that flow from these devices as well as making sure that they don't pose a security risk.

With a few years of experience, there is the possibility to work as an information systems manager, for which the median annual pay is as high as $\$ 117,780$. An information systems manager plans, coordinates, and directs IT-related activities in such a way that they can
fully support the goals of any business. Thus, this job requires a good understanding not only of the business but also of the technology so that appropriate and reliable technology can be implemented at a reasonable cost to keep everything operating smoothly and to guard against cybercriminals.

Because of the expanding job market for IT and networking-related jobs, certifications become important. Most large vendors of network technologies, such as the Microsoft Corporation and Cisco Systems Inc., provide certification processes (usually a series of courses and formal exams) so that individuals can document their knowledge. Certified network professional often earn $\$ 10,000$ to $\$ 15,000$ more than similarly skilled uncertified professionals-provided that they continue to learn and maintain their certification as new technologies emerge.

Adapted from: http://jobs.aol.com, "In Demand Careers That Pay \$100,00 a Year or More"; www.careerpath.com, "Today's 20 Fastest-Growing Occupations"; www.cnn.com, "30 Jobs Needing Most Workers in Next Decade."

1.2 DATA COMMUNICATIONS NETWORKS

> Data communications is the movement of computer information from one point to another by means of electrical or optical transmission systems. Such systems are often called data communications networks. This is in contrast to the broader term telecommunications, which includes the transmission of voice and video (images and graphics) as well as data and usually implies longer distances. In general, data communications networks collect data from personal computers and other devices and transmit those data to a central server that is a more powerful personal computer, minicomputer, or mainframe, or they perform the reverse process, or some combination of the two. Data communications networks facilitate more efficient use of computers and improve the day-to-day control of a business by providing faster information flow. They also provide message transfer services to allow computer users to talk to one another via email, chat, and video streaming.

TECHNICAL 1-1 Internet Domain Names

FOCUS

Internet address names are strictly controlled; otherwise, someone could add a computer to the Internet that had the same address as another computer. Each address name has two parts, the computer name and its domain. The general format of an Internet address is therefore computer.domain. Some computer names have several parts separated by periods, so some addresses have the format computer.computer.computer.domain. For example, the main university Web server at Indiana University (IU) is called www.indiana.edu, whereas the Web server for the Kelley School of Business at IU is www.kelley.indiana .edu.

Since the Internet began in the United States, the American address board was the first to assign domain names to indicate types of organizations. Some common U.S. domain names are

EDU	for an educational institution, usually a university
COM	for a commercial business for a government department or agency
GOV	for a military unit
MIL	
ORG	for a nonprofit organization

As networks in other countries were connected to the Internet, they were assigned their own domain names. Some international domain names are

CA	for Canada
AU	for Australia
UK	for the United Kingdom
DE	for Germany

New top-level domains that focus on specific types of businesses continue to be introduced, such as

AERO	for aerospace companies
MUSEUM	for museums
NAME	for individuals
PRO	for professionals, such as
BIZ	for businesses

Many international domains structure their addresses in much the same way as the United States does. For example, Australia uses $E D U$ to indicate academic institutions, so an address such as xyz.edu.au would indicate an Australian university.

For a full list of domain names, see www.iana.org/root/db.

1.2.1 Components of a Network

There are three basic hardware components for a data communications network: a server (e.g., personal computer, mainframe), a client (e.g., personal computer, terminal), and a circuit (e.g., cable, modem) over which messages flow. Both the server and client also need special-purpose network software that enables them to communicate.

The server stores data or software that can be accessed by the clients. In client-server computing, several servers may work together over the network with a client computer to support the business application.

The client is the input-output hardware device at the user's end of a communication circuit. It typically provides users with access to the network and the data and software on the server.

The circuit is the pathway through which the messages travel. It is typically a copper wire, although fiber-optic cable and wireless transmission are becoming common. There are many devices in the circuit that perform special functions such as switches and routers.

Strictly speaking, a network does not need a server. Some networks are designed to connect a set of similar computers that share their data and software with each other. Such networks are called peer-to-peer networks because the computers function as equals, rather than relying on a central server to store the needed data and software.

Figure 1-1 shows a small network that has four personal computers (clients) connected by a switch and cables (circuit). In this network, messages move through the switch to and from the computers. All computers share the same circuit and must take turns sending messages. The router is a special device that connects two or more networks. The router enables computers on this network to communicate with computers on other networks (e.g., the Internet).

The network in Figure 1-1 has three servers. Although one server can perform many functions, networks are often designed so that a separate computer is used to provide different services. The file server stores data and software that can be used by computers on the network. The print server, which is connected to a printer, manages all printing requests from the clients on the network. The Web server stores documents and graphics that can be accessed from any Web browser, such as Internet Explorer. The Web server can respond to requests from computers on this network or any computer on the Internet. Servers are

FIGURE 1-1
Example of a local area network (LAN)

usually personal computers (often more powerful than the other personal computers on the network) but may be minicomputers or mainframes.

1.2.2 Types of Networks

There are many different ways to categorize networks. One of the most common ways is to look at the geographic scope of the network. Figure 1-2 illustrates four types of networks: local area networks (LANs), backbone networks (BNs), and wide area networks (WANs). The distinctions among these are becoming blurry because some network technologies now used in LANs were originally developed for WANs, and vice versa. Any rigid classification of technologies is certain to have exceptions.

A local area network (LAN) is a group of computers located in the same general area. A LAN covers a clearly defined small area, such as one floor or work area, a single building, or a group of buildings. The upper left diagram in Figure 1-2 shows a small LAN located in the records building at the former McClellan Air Force Base in Sacramento. LANs support high-speed data transmission compared with standard telephone circuits, commonly

FIGURE 1-2 The hierarchical relationship of a local area network (LAN) to a backbone network (BN) to a wide area network (WAN)
operating 100 million bits per second (100 Mbps). LANs and wireless LANs are discussed in detail in Chapter 6.

Most LANs are connected to a backbone network (BN), a larger, central network connecting several LANs, other BNs, MANs, and WANs. BNs typically span from hundreds of feet to several miles and provide very high-speed data transmission, commonly 100 to $1,000 \mathrm{Mbps}$. The second diagram in Figure 1-2 shows a BN that connects the LANs located in several buildings at McClellan Air Force Base. BNs are discussed in detail in Chapter 7.

Wide area networks (WANs) connect BNs and MANs (see Figure 1-2). Most organizations do not build their own WANs by laying cable, building microwave towers, or sending up satellites (unless they have unusually heavy data transmission needs or highly specialized requirements, such as those of the Department of Defense). Instead, most organizations lease circuits from IXCs (e.g., AT\&T, Sprint) and use those to transmit their data. WAN circuits provided by IXCs come in all types and sizes but typically span hundreds or thousands of miles and provide data transmission rates from 64 Kbps to 10 Gbps . WANs are discussed in detail in Chapter 8.

Two other common terms are intranets and extranets. An intranet is a LAN that uses the same technologies as the Internet (e.g., Web servers, Java, HTML [Hypertext Markup Language]) but is open to only those inside the organization. For example, although some pages on a Web server may be open to the public and accessible by anyone on the Internet, some pages may be on an intranet and therefore hidden from those who connect to the Web server from the Internet at large. Sometimes an intranet is provided by a completely separate Web server hidden from the Internet. The intranet for the Information Systems Department at Indiana University, for example, provides information on faculty expense budgets, class scheduling for future semesters (e.g., room, instructor), and discussion forums.

An extranet is similar to an intranet in that it, too, uses the same technologies as the Internet but instead is provided to invited users outside the organization who access it over the Internet. It can provide access to information services, inventories, and other internal organizational databases that are provided only to customers, suppliers, or those who have paid for access. Typically, users are given passwords to gain access, but more sophisticated technologies such as smart cards or special software may also be required. Many universities provide extranets for Web-based courses so that only those students enrolled in the course can access course materials and discussions.

1.3 NETWORK MODELS

There are many ways to describe and analyze data communications networks. All networks provide the same basic functions to transfer a message from sender to receiver, but each network can use different network hardware and software to provide these functions. All of these hardware and software products have to work together to successfully transfer a message.

One way to accomplish this is to break the entire set of communications functions into a series of layers, each of which can be defined separately. In this way, vendors can develop software and hardware to provide the functions of each layer separately. The software or hardware can work in any manner and can be easily updated and improved, as long as the interface between that layer and the ones around it remains unchanged. Each piece of hardware and software can then work together in the overall network.

There are many different ways in which the network layers can be designed. The two most important network models are the Open Systems Interconnection Reference (OSI) model and the Internet model. The Internet model is the most commonly used of the two; few people use the OSI model, although understand it is commonly required for network certification exams.

1.3.1 Open Systems Interconnection Reference Model

The Open Systems Interconnection Reference model (usually called the OSI model for short) helped change the face of network computing. Before the OSI model, most commercial networks used by businesses were built using nonstandardized technologies developed by one vendor (remember that the Internet was in use at the time but was not widespread and certainly was not commercial). During the late 1970s, the International Organization for Standardization (ISO) created the Open System Interconnection Subcommittee, whose task was to develop a framework of standards for computer-to-computer communications. In 1984, this effort produced the OSI model.

The OSI model is the most talked about and most referred to network model. If you choose a career in networking, questions about the OSI model will be on the network certification exams offered by Microsoft, Cisco, and other vendors of network hardware and software. However, you will probably never use a network based on the OSI model. Simply put, the OSI model never caught on commercially in North America, although some European networks use it, and some network components developed for use in the United States arguably use parts of it. Most networks today use the Internet model, which is discussed in the next section. However, because there are many similarities between the OSI model and the Internet model, and because most people in networking are expected to know the OSI model, we discuss it here. The OSI model has seven layers (see Figure 1-3).

Layer 1: Physical Layer The physical layer is concerned primarily with transmitting data bits (zeros or ones) over a communication circuit. This layer defines the rules by which ones and zeros are transmitted, such as voltages of electricity, number of bits sent per second, and the physical format of the cables and connectors used.

Layer 2: Data Link Layer The data link layer manages the physical transmission circuit in layer 1 and transforms it into a circuit that is free of transmission errors as far as layers above are concerned. Because layer 1 accepts and transmits only a raw stream of bits without understanding their meaning or structure, the data link layer must create and recognize message boundaries; that is, it must mark where a message starts and where it ends. Another major task of layer 2 is to solve the problems caused by damaged, lost, or duplicate messages so the succeeding layers are shielded from transmission errors. Thus, layer 2 performs error detection and correction. It also decides when a device can transmit so that two computers do not try to transmit at the same time.

FIGURE 1-3
Network models. OSI = Open Systems Interconnection Reference

OSI Model	Internet Model	Groups of Layers	Examples
7. Application Layer	5. Application Layer	Application Layer	Internet Explorer and Web pages
6. Presentation Layer			
5. Session Layer			
4. Transport Layer	4. Transport Layer	Internetwork Layer	TCP/IP software
3. Network Layer	3. Network Layer		
2. Data Link Layer	2. Data Link Layer	Hardware Layer	Ethernet port, Ethernet cables, and Ethernet software drivers
1. Physical Layer	1. Physical Layer		

Layer 3: Network Layer The network layer performs routing. It determines the next computer to which the message should be sent so it can follow the best route through the network and finds the full address for that computer if needed.

Layer 4: Transport Layer The transport layer deals with end-to-end issues, such as procedures for entering and departing from the network. It establishes, maintains, and terminates logical connections for the transfer of data between the original sender and the final destination of the message. It is responsible for breaking a large data transmission into smaller packets (if needed), ensuring that all the packets have been received, eliminating duplicate packets, and performing flow control to ensure that no computer is overwhelmed by the number of messages it receives. Although error control is performed by the data link layer, the transport layer can also perform error checking.

Layer 5: Session Layer The session layer is responsible for managing and structuring all sessions. Session initiation must arrange for all the desired and required services between session participants, such as logging on to circuit equipment, transferring files, and performing security checks. Session termination provides an orderly way to end the session, as well as a means to abort a session prematurely. It may have some redundancy built in to recover from a broken transport (layer 4) connection in case of failure. The session layer also handles session accounting so the correct party receives the bill.

Layer 6: Presentation Layer The presentation layer formats the data for presentation to the user. Its job is to accommodate different interfaces on different computers so the application program need not worry about them. It is concerned with displaying, formatting, and editing user inputs and outputs. For example, layer 6 might perform data compression, translation between different data formats, and screen formatting. Any function (except those in layers 1 through 5) that is requested sufficiently often to warrant finding a general solution is placed in the presentation layer, although some of these functions can be performed by separate hardware and software (e.g., encryption).

Layer 7: Application Layer The application layer is the end user's access to the network. The primary purpose is to provide a set of utilities for application programs. Each user program determines the set of messages and any action it might take on receipt of a message. Other network-specific applications at this layer include network monitoring and network management.

1.3.2 Internet Model

The network model that dominates current hardware and software is a more simple fivelayer Internet model. Unlike the OSI model that was developed by formal committees, the Internet model evolved from the work of thousands of people who developed pieces of the Internet. The OSI model is a formal standard that is documented in one standard, but the Internet model has never been formally defined; it has to be interpreted from a number of standards. ${ }^{1}$ The two models have very much in common (see Figure 1-3); simply put, the Internet model collapses the top three OSI layers into one layer. Because it is clear that the Internet has won the "war," we use the five-layer Internet model for the rest of this book.

Layer 1: The Physical Layer The physical layer in the Internet model, as in the OSI model, is the physical connection between the sender and receiver. Its role is to transfer a series

[^0]
[^0]: ${ }^{1}$ Over the years, our view of the Internet layers has evolved, as has the Internet itself. It's now clear that most of the Internet community thinks about networks using a five-layer view, so we'll use it as well. As of this writing, however, Microsoft uses a four-layer view of the Internet for its certification exams.

